OpenJMS User Guide

Authors:
Jim Alateras [jima@intalio.com]
Tim Anderson [tima@intalio.com]
Jim Mourikis [mourikis@intalio.com]

Revision: April 2, 2003

CONFIDENTIAL & PROPRIETARY

1A oo [8Te11To] o HTEUTTT TP 6

What IS OPENIMS? ... e e e e e e e e e e e aaaa e e aeees 6
FEAtUIES! ..o e 6
ADOUL THIS GUIE .ottt eeeeennebnnnee 6
SUPPOIT SEIVICES ...ttt ee ettt e ettt e e e e e e e e e e bbb s e e e e e e e e eettba e e e eeeaaeesnnnes 6
SYSteM REQUIFEMENTScceiiieiiiiiie et e e e e e e e e e e e e e ear e e e e e e eeeennnes 7
GettiNng OPENIMS ..o e e e et e e e e e e eeeenannnes 7
== T YA 111] 01U 11 o o 7
S0UICe DIStHBDULION......ciiiiiiie et e e eeeeaees 7
GV S 7
CVS SNAPSNOL ... e e e eeaee 8
ENvironment Variablesuuuiiiiiiiiiiiiiiiiiiiiiiiii s 8

L8 a o | = (o |1 o [PPSR 9
From Binary DisStriDUtioN............ouuuiiiii e 9
From CVS REPOSITONY ...uvuniiieiiiiieiiie ettt et 9
REIECASEA VEISION. ...ttt s 9
CVS SNAPSNOL ... et eaeeaee 9

BUIIAING e 10
BUIlAING the SOUICE ... 10
D[=T (0] VRS 0 o (0 [P 10
Preparatory work for the UNIX Environment.............cooovevviiiiieeeeieeeeiiiinnnnn. 11
= 1011 o [T o 11
Building the EXamPIES.......ccoo oo 12
D[=T (o] VR 0 o (0 [P 12
Preparatory work for the UNIX Environment.............cooovvviiiiiieeeeieeeeiiiinnnnn. 13
= 1011 o [T o 13

YT V=] Yol 1 o] PP 15
OVEIVIEW ..o 15
ENVIFONMENT SCHPLS .ceeiiiiiii et 15
N[] (PP 15

(©70] o110 18] = 11 To] o [PPSR 16
Configuration File FOrMat.........ccooeiiiiiiiiiiiie e e e e e eeeaannes 16
OVEBIVIBW ...ttt ettt e e e e e e e et eeet e e e e e e e e eeesbnan e e eeaaeeeennes 16
Administration Configurationcooovvivieiiiiiii e 17
Binding Administered Destinationsuuuiiiiiiiiiiiiiiiiii e 18
(70T 0] g [T o1 (] £ TSP 19
Database Configurationuuuuiiiiii e 21
HTTP CoNfIQUIatioNcooe et e e e e e 22

Garbage Collection Configurationccooveeeiiiieiiiiiii e 23

JNDI CONFIGUIALION.......eieiiiee et e e e e aaanas 24

Lease Manager Configuration..........cccoueeeeeiieeiiiiiiee e e e 24
Logger CoNfIQUIAtIONcooiiiiiiiiiii e e e 25
Message Manager Configurationccceuvuiiiiiieeeeeeeeiicee e 25
RMI CONFIQUIALION .. e 25
Server ConfiQUIatioNuuueeiiii e e e e e e e 26
Scheduler ConfigUIationooi oo 27
LI SO0 1111 U1 = 11 o o [P 27
Other Configuration FIlEScooo oo 28
Log4j Configuration Fileouuueiiiiee e 28
Configuration of an RMI OpenJMS SErVer..........ccouuuiiiiiiiiieiiiieiiicae e 29
Configuration of @ TCP OPEeNJIMS SEIVENcccoeeeiiieiiiiiieeeeeeeeeeiea e e e e e eeeaanens 30
Support for External INDI ProVideruuiiiiiiiiiiiiiiee e 31
Sample Database Configurations...............uuuiiiiieeieiiiiiiin e e e e e eeenns 32
OFACIE ...t 32
)Y/ 0= = 2SRRI 32
MY SQL e aa e e as 33
H S O 33
INEEIDASE .. 33
IDBIM ..ottt 34
Configuring @ JIDBC Database.........cccuuiiiiiiiiieiieeiiiii et 36
Adding JDBC Driver to the classpathcooiiiiiiiiiic e, 36
Edit the OpenJMS configuration file ... 36
Execute the dbtool appliCationccoooeviiiiiiiiiii e 37
What If dbtool doesn’t WOrk?eeoiiiiiiiiii e 37
StartiNg the SEIVET ... e 38
RIMI SEIVET ... et e et e e e e e e e e e e e e eenans 38
LT YT YT TP 40
RMI Server with External INDI Provider.............coiiiieiiiiiiiiiiiiee e 42
Database Lock NOt Releaseduuuuuuiiiiiiiiiiiiiiiiiiiiiiiiae 44
AAAreSS IN USE.. .ot e s 45
RUNNING YOUN FirSt PrOgramscieiciiiiieiiiiie et e e e e e e e eaennan s 46
OVEBIVIBW ...ttt ettt ettt e e e e e e e e e et a bbb e e e e e e e eeeeaaba s e e e eaeeeeennes 46
Client Interaction DIagramcccceceeiieeieiiiie e eeee e e e e e e e eeaaa e e e e eeeeeenes 46
Single Publisher, Single Transient Subscriber ..., 47
Single Publisher, Single Durable SUDSCIIDEr............ceiiiiiiiiiiiiciee e, 48
Multiple Publishers, Multiple SUbSCHbDErs ..., 49
Single Sender, SiNGIe RECEIVET.........cccvveeiiiiiie e e e e e 50
Single Senders, Multiple RECEIVEIS..........uuuiiiiiiiiiiiiiici e 51

Multiple Senders, Multiple RECEIVEISccoovveiiiiiiiei e 52

Using the AdmINIStration TOOI........cooiiiiiiiiiii e 53

1] o o [1 7o 1o o 53
Running the AdmInistration TOOIcoooiiiiiiiiiiii e 53
VLT 1O @1 o] g 54
MOAES OFf OPEIALION.....cuieiiiii et e e 54
(@ 0] 11 0= 1Y/ 0T [SRR 54
OFfliNE MOTE ... e et e e e e e e e eeenes 55
Understanding the DISPIayuuiiiiieiiiiiiie e e e e e e 56
Context Sensitive COMMANASoooiiiiiiiiiiiiaee e aeeeeeeees 56
OPENIMS SErVer NOUEceviiiie et e e e e e e e e e e e eeeanes 56
TOPIC NOUC......ei e e e e e e e e aaeanas 58
QUEUE NOGE.... .. it e e e e e e e e e e raa s 58
CONSUMET NOGE ...ttt e e e e e e ee e e e e e e eeeeanes 59

Using the OpenIMS AdMIN APo e 60
FRATUIES ... e 60
L LS [T I £ L= A PPN 61
Accessing the OpendMS AdmIN APL.......ooo e 61
Using the OpenJMS AdMIN APl ... 61

The exolabCore lBrary ... e 63

OPENIMS OVEI SSL .. it e e e et e et e e et e e aaanaaes 64

Typical CoNfIQUIALIONScoeiiiiiiiiiei e e e e e e e e e e 66
RMI, Oracle, Embedded JNDI SEIVENccouiiiiiiiiieeeeeeeeeeiee e 66
TCP, MySQL, External INDI SEIVEN........ccoiiiiiiiiiiiiiiiee e e e e eeeaaeens 66
RMI, JDBM, External INDI SEIVEXccooiiiiiiiiiiieeeeeeeeee e 67

OPENIMS PEIfOMMEANCEovviiie et e e e e e e e e e e e aaa e e eee s 68

Appendix A: OpenJMS with Jakarta TOMCALcoovviiiiiiiiiniiiiieeei e 69
T o o [1 7o 1o o 69
DEPENUENCIES ... e et e e e e e e e e saaa s 69
(70 1 (=1 (Rl BTV | =1 o o PR 69
Writing an OpenJMS Web Application ... 70
SimplePublisher html ... 72
SIMpIePUDBIISNEr.javaoiiiiii e 73
Compiling and Packagingccoovveiiiiiiiiii e e e 74
Deploying the OpendMS Web Applicationccoeeiiiiiiiiiiiiiii e 75
Unpack the Web AppliCation.............coevviiiiiiiiieeeceeece e 75
Modify the server.xml configuration file...............ccccoviiiiii . 76
ReStaArtiNg TOMCAL. ...ttt 76
Starting the OPENIMS SEIVETccceiieeeee e e eeaans 76

Using the OpenJMS Web Applicationuuciiiiiiiiiiiiiii e 77

[TSY 0]I | o<1 77

OPENIMS ...t e e e 77
JaKarta TOMCALcooiiiiiiiie et e e 78
Appendix B: OpenJMS Library DependencCies...........ccuuuuuriiiiieeeeeeeeiiiinieeeeeeenannns 79
Runtime Library DependencCiescoivie it 79
OPENIMS SEIVET ..t e e e e an e eaa e eees 79

OPENIMS ClHENT.....ei e 79

Introduction

What is OpenJMS?

OpenJMS is an Open Source implementation of Sun Microsystems’s Java Message Service
specification (http://java.sun.com/products/jms.html)

Features!

OpenJMS v0.7.5 supports the following features

Topic and Queue messaging models

Persistent and non-persistent message delivery modes
Persistence using JDBM (http://jdbm.sourceforge.com/) or JDBC.
QueueBrowser and Selectors

Local Transactions

Synchronous and Asynchronous delivery

Administration GUI

XML-based configuration files

In-memory and database garbage collection

Automatic client disconnection detection

Support for Applet

Integrates with Servlet containers such as Jakarta Tomcat
Support for RMI, TCP, HTTP* and SSL protocol stacks
Support for large number of destinations and subscribers.

AV N N N NN W N N N N N RN

The distribution also includes a range of examples showcasing the different messaging models
and delivery modes.

About This Guide

This manual is a user’s guide to OpenJMS, covering installation, building, configuration and
deployment. Although the guide deals exclusively with the Microsoft Windows™ and Linux
platforms, it is also pertinent to Mac OSX and other flavours of UNIX.

Support Services
1. The OpenJMS web site http://openjms.sourceforge.net/.

! No all features are enabled for HTTP. In particular, asynchronous message listener facility is not available.

2. The OpenJMS mailing lists are located here: http://sourceforge.net/mail/?group _id=54559.
3. The OpenJMS CVS repository is located here https://sourceforge.net/cvs/?group _id=54559

System Requirements

Operating System Windows 98/NT/2000 or Linux or Mac OSX?
JVM JDK1.2+, JDK1.3+, JDK1.4+

Getting OpenJMS

Binary Distribution

The OpenJMS binary distribution contains the latest openjms jar files, dependent libraries,
examples and documentation. It does not include the source files or the facility to build
OpenJMS.

The binary distribution can be downloaded from
http://openjms.sourceforge.net/download.html. The name of the file is in the form of
openjms-<version>.tgz (Unix) or openjms-<version>.zip (Windows), where <version>
denotes the openjms version number (i.e. 0.7.5).

When you have downloaded the file, unpack it using an appropriate utility. The tgz format
requires gunzip and tar whereas the zip format requires winzip.

Source Distribution

The OpenJMS source distribution is a snapshot of the CVS repository at the time of the
release. It contains all the libraries, source, examples, tests and documentation required to
build and run OpenJMS.

The source distribution can be downloaded from
http://openjms.sourceforge.net/download.html. The name of the file is in the form of
openjms-<version>-src.tgz (Unix) or openjms-<version>-src.zip (Windows), where version
denotes the openjms version number (i.e. 0.7.5).

When you have downloaded the file, unpack it using an appropriate utility. The tgz format
requires gunzip and tar whereas the zip format requires winzip.

CVS
The OpenJMS source can be obtained from CVS

cvs -d: pserver:anonynous@yvs. sour cef orge. net:/cvsroot/openjns co —r <revision> -P openjns
where <revision> is the release version, of the form openjms_<version>, eg openjms_0 7 5.

% The list only reflects the platforms that we have tested against.

CVS Snapshot

A CVS snapshot is a work in progress version of OpenJMS, which has not been quality
assured. You can find information about the CVS repository at
http://openjms.sourceforge.net/cvs.html.

To check out a clean copy of the repository use the following commands
cvs -d: pserver:anonynous@yvs. sour cef orge. net:/cvsroot/openjns | ogin

cvs -z3 -d: pserver:anonynous@yvs. sour cef orge. net:/cvsroot/openjns co openjns
NOTE: When prompted for a password for anonymous, simply press the Enter key.

OpenJMS also uses the exolabcore library, which is distributed as a jar in the openjms
module. To retrieve the source code for this library you need to check out the exolabcore
module from the repository

cvs -z3 -d: pserver: anonynous@vs. sour cef orge. net : / cvsr oot/ openj ms co exol abcor e’

Environment Variables

The OpenJMS server requires the following environment variables to be set in order to run:
JAVA HOME Path of the JDK installation directory
OPENJMS_HOME Path of the OpenJMS installation directory

¥ assumes you have already logged in

Upgrading

From Binary Distribution

In most cases, the simplest way to download and install the latest version of the OpenJMS
libraries is to download the binary distribution. This will also include a copy of all the runtime
libraries, examples, and configuration files.

From CVS Repository

Released Version

If you already have a copy of the CVS repository then you can upgrade to a released version by
executing the following command in the openjms base directory:

cvs -d: pserver:anonynous@vs. sour cef orge. net:/cvsroot/openj ms update —dP —r <revi sion>

where <revision> is the release version, of the form openjms_<version>, eg openjms_0 7 2.

CVS Snapshot

To upgrade to the latest version, execute the following:
cvs -d: pserver:anonynous@yvs. sour cef orge. net:/cvsroot/openj ns update update —dP

WARNING the latest version in the CVS repository is not Quality Assured.

Building

OpenJMS uses Jakarta ANT v1.5 (http://jakarta.apache.org/ant) as its build tool. ANT defines
all its targets in an XML-based file. To get a list of supported targets enter ‘build —

projecthelp’.

Building the Source

This section describes how to build the OpenJMS source distribution.

Directory Structure
The OpenJMS source distribution has the following directory structure.

Directory Description
OpenJMS root directory. It contains script files to build and test
OpenJMS.

bin* Contains all scripts (.bat and .sh) to execute the OpenJMS server and
run the examples. All scripts are executed relative to the bin directory.

build This is the root directory for all generated class files and documentation

build/classes
build/doc/api
build/doc/javadoc
build/doc

build/examples
build/testharness
config®

dist

lib

src

src/etc
src/examples
src/main
src/testharness®

The class files generated by compiling the openjms source files
Holds the generated OpenJMS API javadoc
Holds the generated OpenJMS javadoc

A local copy of the openjms web site located at
http://openjms.sourceforge.net

The class files generate by compiling the examples
The class files generate by compiling the test suite

Contains all the xml configuration files, which are required by the
script files.

Includes the OpenJMS generated release files

Holds all the libraries required to build and execute OpenJMS

Base directory of the OpenJMS source

Includes the license, changelog, readme and other miscellaneous files
Base directory for all examples and applications

Base directory of the OpenJMS source

Base directory for all the testing code. Most of our test cases are
implemented in the CTS (Compliance Test Suite), which is not part of

* The files in this directory are generated by the build process.
> The files in this directory are generated by the build process.
® The testharness directory is being restructured.

our open source distribution.

Preparatory work for the UNIX Environment

If you are running OpenJMS on a UNIX platform then you need to do some preparatory work
before building the product. Firstly, you must ensure that the build.sh script is executable. To
make the script executable enter the following command in the console.

Secondly, you need to execute the following shell command to prime all the other scripts for
the UNIX environment.

Building
To build the distribution you must execute this command from the OpenJMS root directory.
The root directory contains the script files build.bat and build.sh.

The output from the build should look something like this

Building the Examples

When you download the binary distribution, you only get the examples source code. This
section explains how to compile the examples.

Directory Structure
The OpenJMS binary distribution has the following directory structure

Directory Description

OpenJMS root directory. It contains script files to build the examples.
The name of the base directory is in the form of openjms-version,
where version denotes the version number of that distribution

bin Contains all scripts (.bat and .sh) to execute the OpenJMS server and
run the examples. All scripts are executed relative to the bin directory.

build This is the root directory for all generated class files

build/examples The class files generate by compiling the examples

config Contains all the xml configuration files, which are required by the
script files.

lib Holds all the libraries required to execute OpenJMS and associated
examples

src Base directory of the all source files

src/etc Includes the license, changelog, readme and other miscellaneous files

src/examples Base directory for all examples and applications

Preparatory work for the UNIX Environment

If you are running OpenJMS on a UNIX platform then you need to do some preparatory work
before building the product. Firstly, you must ensure that the build.sh script is executable. To
make the script executable enter the following command in the console.

chmod +x . /bui | d. sh

Secondly, you need to execute the following shell command to prime all the other scripts for
the UNIX environment.

./build.sh convert

Building

To build the examples you must execute the following command from the OpenJMS root
directory. The root directory contains the script files build.bat and build.sh.

For W ndows

build all

For Uni x
./build.sh all

The output from the build should look something like this

C: \tenp\openjns-0.7.2>buil d all

lib\xslp 1.1.jar;lib\xerces-J 1.3.1.jar;lib\oro-2.0.4.jar;lib\junit_3.7.jar;lib\exol abt ool s-
1.0.jar;lib\castor-0.9.3.jar;lib\antlral

| _2.7.1.jar;lib\ant _optional _1.5.jar;lib\ant_1.5.jar;c:\jdk1l.3.1\lib\tools.jar

Bui | dfile: src\build. xm

cl ean:

Server Scripts

Overview

A number of scripts are provided to start, stop, and administer the OpenJMS server. These are
located in the SOPENJMS_HOME/bin directory. Versions exist for both Windows and UNIX
— append a .bat or .sh suffix accordingly.

Script Description

startup Starts the OpenJMS server. On Windows, starts the server in a
new window’.

shutdown Shuts down the OpenJMS server.

admin Runs the OpenJMS administration tool..

openjms The main server script, invoked by startup, shutdown, and admin.

Environment Scripts

As of version 0.7.4, the scripts ignore the global CLASSPATH. Instead the scripts customize
their environment by calling setenv.bat (for Windows) or setenv.sh (for Unix) script in
$OPENJMS_HOME/bin directory, if they exist.

Eg: to configure the CLASSPATH for Oracle on Windows, setenv.bat might look like:

remset up the classpath to include the Oracle JDBC drivers

set CLASSPATH=c:/oracle/jdbc/lib/classesl2.zip

Note

By default, each of the above scripts look for the OpenJMS server configuration in
$OPENJMS_HOME/config/openjms.xml.

A different configuration file can be specified using the —config argument eg:
> startup —config ../config/openjns-tcp. xm

" Use “openjms run” to run in the current window

Configuration

Configuration File Format

Overview

The configuration file is generated by compiling an XML Schema file with the Castor
SourceGenerator (http://www.castor.org). The compiler generates Java objects for each

element with corresponding setters and getters for each defined attribute or sub-element.

OpenJMS defines the following sections in its configuration file.

Element

Configuration
Description

Required

AdminConfiguration

AdministeredDestinations

Connectors

DatabaseConfiguration

GarbageCollectionConfiguration

HttpConfiguration

JndiConfiguration

LeaseManagerConfiguration

LoggerConfiguration

This section deals with configuration
elements specific to the Administration
GUI. From the GUI you can start, stop and
configure the OpenJMS server.

This section allows administered Topic and
Queue objects to be registered when the
server is started. This avoids the need to
create them programmatically, or via the
Administration GUI.

This section lists the connectors (eg, tcp,
http, rmi) that may be used to connect to the
server.

All database related configuration options
are specified by this section

Configures the in-memory garbage
collection service

This section is used to configure HTTP,
when using an HTTP or HTTPS connector

Information required to connect to an
external JINDI provider for the purpose of
registering connection factories and
administered destinations.

The options in this section deals with the
Lease Manager, which is by the OpenJMS
server to handle message expiration.

This section deals with the logger module,
which uses the log4j package exclusively.

1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

MessageManagerConfiguration The message manager configuration section
relates to the message manager core

RmiConfiguration This section is used to configure RMI, when
using an RMI connector

ServerConfiguration The server configuration section relates to
the server core

SchedulerConfiguration Configures options for the OpenJMS
scheduler service

TcpConfiguration This section is used to configure TCP, when

using a TCP or TCPS connector

0.1

0.1

0.1

0.1

0.1

Examples

The following is a minimal configuration for an OpenJMS server running on Windows, using

the JDBM database for persistency.

<Confi gurati on>
<Adm nConfi gurati on
scri pt ="${ openj ns. hone}\ bi n\ st art up. bat"
confi g="${openj ns. hone}\ confi g\ openj ns. xm " />

<Dat abaseConfi gurati on>
<JdbnDat abaseConf i gurati on nane="${openj ns. hone}\ openj ns. db” />
</ Dat abaseConfi gurati on>
</ Confi gurati on>

The following is a minimal configuration for an OpenJMS server running on UNIX, using the

JDBM database for persistency.

<Confi gurati on>
<Admi nConfi gurati on
scri pt ="${ openj ns. honme}/ bi n/ start up. sh"
confi g="$%{openj ns. hone}/ confi g/ openj ns. xm " />

<Dat abaseConfi gur ati on>
<JdbnDat abaseConf i gurati on nane="${ openj ns. hone}/ openj ms. db” />
</ Dat abaseConfi gur ati on>
</ Confi gurati on>

Administration Configuration

AdminConfiguration

Attribute Description Required

script The relative or absolute file name of script 1
used to start the OpenJMS server.

config The relative or absolute file name of the 1

XML configuration file used by the
OpenJMS server

Examples

The administration configuration for an OpenJMS server, running on Windows.

<Admi nConfi gurati on

scri pt ="${openj ns. honme} \ bi n\ st art up. bat "
confi g="$%{openj ns. hone}\ confi g\ openj ns. xm " />

The administration configuration for an OpenJMS server, running on UNIX.

<Admi nConfi gurati on

scri pt ="${ openj ns. hone}/ bi n/ start up. sh"
confi g="${openj ns. hone}/ confi g/ openj ms. xm " />

NOTE: the ${openjms.home} variable is replaced with the value of the OPENJMS_HOME
environment variable, which points to the OpenJMS root directory.

Binding Administered Destinations

AdministeredDestinations

Element Description Required
AdministeredTopic Defines a list of administered topics. 0.*
AdministeredQueue Defines a list of administered queues. 0.*
AdministeredTopic
Attribute Description Required
name The name of the administered topic that is 1
registered at server startup time. Each topic
has zero or more registered durable
subscribers
Element
Subscriber This element is used to register a durable 0.*
subscriber for the topic.
Subscriber
Attribute Description Required
name The name of the durable subscriber that is 1
registered at server startup time.
AdministeredQueue
Attribute Description Required
name The name of the administered queue that is 1

registered at server startup time.

Examples

The following creates an administered topic ‘topicl’ with two durable subscribers *sub1’ and
‘sub2’, and three administered queues, ‘queuel’, ‘queue2’, and ‘queued’
<Admi ni st er edDest i nati ons>
<Admi ni st eredTopi ¢ topi c="topi c1">
<Subscri ber name="subl" />

<Subscri ber nane="sub2" />
</ Admi ni st er edTopi c>

<Admi ni st er edQueue nanme="queuel" />

<Admi ni st er edQueue nane="queue2" />

<Admi ni st er edQueue nanme="queue3" />
</ Admi ni st er edDest i nat i ons>

Connectors

Connectors specify the transport protocols that may be used to connect to an OpenJMS server.
OpenJMS supports the following connectors:

e tcp

o tcps
e http
* https
e mi

» embedded (used when the JMS client and OpenJMS server run in the same JVM)

Each configured connector must have a set of connection factories registered for it. These are
bound in JNDI and enable clients to create new javax.jms.Connection instances.

Connectors
Element Description Required
Connector Specifies the type of transport protocols that 1.*

the OpenJMS server should use, and the
connection factories to register for that

protocol.
Connector
Attribute Description Required
scheme The type of protocol to use. Valid values for 1

this attribute are “tcp”, “tcps”, “http”,
“https”, “rmi”, or “embedded”

Element

ConnectionFactories Specifies the list of connection factories to 1
bind in JNDI for the connector.

ConnectionFactories

Element Description Required
QueueConnectionFactory Binds a javax.jms.QueueConnectionFactory 0.*
in JNDI with the specified name
TopicConnectionFactory Binds a javax.jms.TopicConnectionFactory 0.*
in JNDI with the specified name
XAQueueConnectionFactory Binds a 0.*
javax.jms.XAQueueConnectionFactory in
JNDI with the specified name
XATopicConnectionFactory Binds a 0.*
javax.jms.XATopicConnectionFactory in
JNDI with the specified name
QueueConnectionFactory
Attribute Description Required
name The name of the QueueConnectionFactory 1
bound in JNDI
TopicConnectionFactory
Attribute Description Required
name The name of the TopicConnectionFactory 1
bound in JNDI
XAQueueConnectionFactory
Attribute Description Required
name The name of the 1
XAQueueConnectionFactory bound in JNDI
XATopicConnectionFactory
Attribute Description Required
name The name of the 1
XATopicConnectionFactory bound in JNDI
Examples

The following specifies to use both a “tcp’ and ‘rmi’ connector, and binds each of the
connection factories in JNDI. This will enable one OpenJMS server to support both requests
from a TCP client and an RMI client.

<Connect or s>
<Connect or schenme="tcp">
<Connect i onFact ori es>

<QueueConnecti onFact ory name="QueueConnecti onFactory" />
<Topi cConnect i onFact ory name="Topi cConnecti onFactory" />

<XAQueueConnecti onFact ory name="XAQueueConnecti onFactory" />
<XATopi cConnecti onFact ory name="XATopi cConnecti onFactory" />
</ Connect i onFact ori es>
</ Connect or >
<Connector schenme="rm ">
<Connect i onFact ori es>
<QueueConnecti onFact ory name="rm QueueConnecti onFactory" />
<Topi cConnecti onFact ory name="rm Topi cConnecti onFactory" />
<XAQueueConnecti onFact ory name="rm XAQueueConnecti onFactory" />
<XATopi cConnecti onFact ory name="r m XATopi cConnecti onFactory" />
</ Connect i onFactori es>
</ Connect or >
</ Connect or s>

Database Configuration

DatabaseConfiguration
Attribute Description

Required

garbageCollectioninterval To automatically remove processed
persistent messages from the database,
specify this attribute with an interval, in
seconds. The interval indicates how often
messages will be checked. Note that the
current algorithm , which deletes messages
is very expensive and a high interval should
be set. In addition this facility can be
disabled if you are only using the queue
message model

garbageCollectionBlockSize This attribute hints on the block size that the
garbage collector should use when removing

messages. It can impact the performance of
the system

garbageCollectionThreadPriority This is the priority assigned to the garbage
collection thread. It ranges from 1-10 and if
one is not allocated it defaults to 5.

0.1

0.1

0.1

Element

RdbmsDatabaseConfiguration Specifies the database configuration for a
JDBC compliant database.

JdbmDatabaseConfiguration Specifies the database configuration for a
JDBM (or object) database.

0.1

0.1

RdbmsDatabaseConfiguration
Attribute Description

Required

driver The JDBC driver class. This must be XA

1

compliant.
url The database URL.

user The user name that OpenJMS uses to access
the database

password The user’s password 1

retries The number of times to retry a failed 0.1
transaction. If not specified it defaults to 5

timeout The interval, in seconds, between 0.1

transaction retries. If not specified it
defaults to 2 seconds

JdbmDatabaseConfiguration

Attribute Description Required
name The JDBM database path name. 1
cacheSize The size of the JDBM database cache held 0.1

in memory. All recently accessed objects are
cached in memory to improve performance.

Examples
The following specifies to use an RDBMS for persistency, in this case MySQL.

<Dat abaseConfi gurati on
gar bageCol | ecti onl nt erval =" 180"
gar bageCol | ecti onBl ockSi ze="500"
gar bageCol | ecti onThreadPriority="5">
<RdbrsDat abaseConfi gurati on
driver="org.gjt.mm nysql.Driver"
url ="jdbc: nysql://Ilocal host/test"
user =" openj ns"
passwor d=" openj ns"
retri es="5"
ti meout ="2" />
</ Dat abaseConfi gurati on>

The following specifies to use JDBM for persistency.

<Dat abaseConfi gurati on

gar bageCol | ecti onl nt erval =" 180"

gar bageCol | ecti onBl ockSi ze="500"

gar bageCol | ecti onThreadPriority="5">

<JdbnDat abaseConf i gurati on nane="${openj ns. hone}/ openj ns. db" />
</ Dat abaseConfi gurati on>

HTTP Configuration

HttpConfiguration

Attribute Description Required
host The web server host. Defaults to localhost if 0.1
not set.
port The web server port. Defaults to 8080 if not 0.1
set.
proxyHost The proxy host used to connect back to 0.1
clients if required.
proxyPort The proxy port used to connect back to 0.1
clients if required.
clientPinglinterval The client ping interval, specified in 0.1
seconds. Defaults to 15 if not set. If set to O,
the ping is disabled.
Examples
<Ht t pConfi gurati on host="1|ocal host"
port ="8080"
clientPinglnterval ="20" />
Garbage Collection Configuration
GarbageCollectionConfiguration
Attribute Description Required
memoryCheckInterval Indicates how often the server will check the 0.1
memory utilization of the server. It is
specified in seconds and defaults to 30
seconds. It will check to ensure that the ratio
of free memory to total memory doesn't fall
below the lowWaterThreshold.
lowWaterThreshold The ratio of free memory to total memory, 0.1
specified as a percentage, which will trigger
GC. The default value of 20, indicates that
when free memory falls below 20% of total
memory (i.e. total VM memory) then
garbage collection will be triggered. The
range of valid values is
between 10-50.
garbageCollectioninterval Indicates how often, in seconds, the in 0.1

memory garbage collector will run to
remove processed messages from the cache.
The value is specified in seconds. A value
of zero will disable this capability. The
default value is 300 seconds. THIS IS NOT
LONGER USED

garbageCollectionThreadPriority The priority assigned to the garbage 0.1
collection thread. It ranges from 1-10 and
defaults to 5.

Examples

<Gar bageCol | ecti onConfi gurati on
nenor yCheckl nt er val =" 60"
| owMat er Thr eshol d=" 20"
gar bageCol | ecti onl nt erval =" 120"

JNDI Configuration

JndiConfiguration
Element Description Required

property Properties used to instantiate an 0.*
Initial Context

property
Attribute Description Required
name The JNDI property name 1
value The JNDI property value 1

Examples

The following JNDI configuration specifies the properties to use rmiregistry as the JNDI
provider.

<Jndi Confi gurati on>
<property nanme="java. naning.factory.initial"
val ue="com sun. jndi.rm.registry. Regi stryCont ext Factory" />
<property nanme="j ava. nam ng. provi der.url" value="rm ://| ocal host: 3031" />
</Jndi Confi gurati on>

Lease Manager Configuration

LeaseManagerConfiguration
Attribute Description Required

sleepTime® Time, in milliseconds reaper thread will 0.1
sleep if there is no work to be done.

8 This will be removed in the near future

Examples
<LeaseManager Confi gurati on sl eepTi ne="5000" />

Logger Configuration

LoggerConfiguration
Attribute Description Required

file The name of the log4j configuration file, 1
which is an xml file conforming to log4j.dtd

Examples

Logger configuration using the default log4j file installed in <openjms home>/config.

<Logger Confi gurati on
file="${openjns. hone}/config/logdj.xm” />

Message Manager Configuration

MessageManagerConfiguration

Attribute Description Required
destinationCacheSize The maximum size of a destination cache 1
before non-persistent

messages are discarded. This is used to limit
the memory consumption of the JMS server.

If the cache exceeds this size then new non-
persistent messages are dropped and
persistent messages are evicted from
memory

Examples
<MessageManager Confi gurati on desti nati onCacheSi ze = "10000" />

RMI Configuration

RmiConfiguration
Attribute Description Required

embeddedRegistry Determines whether to run an embedded or 0.1
external RMI registry. To run an external

RMI registry then set this to false.

registryHost The host name or the IP address of the 0.1
machine hosting the RMI Registry. It
defaults to localhost.
registryPort The port number that the RMI Registry is 0.1
using. It defaults to 1099.
clientPinglinterval The client ping interval, specified in 0.1
seconds. If set to 0, the ping is disabled.
serverName The name of the OpenJMS server. This 0.1
must be unique within the RMI registry
being used.
jndiName The name of the JNDI server. This must be 0.1
unique within the RMI registry being used.
adminName The name of the Administration server. This 0.1
must be unique within the RMI registry
being used.
Examples
The following specifies an embedded RMI registry, running on port 1099.
<Rm Regi stryConfi guration
enbeddedRegi stry = "true"
regi stryPort = "1099" />
The following specifies an external RMI registry, running on host ‘myhost’ port 1099.
<Rm Regi stryConfi guration
enbeddedRegi stry="f al se"
regi stryHost =" nyhost”
regi stryPort = "1099" />
Server Configuration
ServerConfiguration
Attribute Description Required
host The address of the machine hosting the 0.1

OpenJMS server. If this is not explicitly
specified it will default to localhost. If you
are running the server and clients across a
number of machines then you must use
either the hostname or the IP address of the
machine.

In addition, if the machine running the
OpenJMS server is a multi-homed host,
then you must specified one of the IP
addresses.

embeddedJNDI This specifies whether to use an embedded 0.1
(or internal) JNDI provider, or an external
one. If not specified, it will default to true.
If it is set to false, then the
JndiConfiguration element is should be
configured.

Examples

OpenJMS server running on host ‘myhost’ using an embedded JNDI provider.
<Server Configurati on host="nyhost” enbeddedJNDI ="true” />

OpenJMS server running on host “‘myhost’ using an external JNDI provider running on
‘myotherhost’, port 1099.
<Server Configurati on host="nyhost” enbeddedJNDI ="f al se” />
<Jndi Confi gurati on>
<property name="java. naming.factory.initial"
val ue="com sun.jndi.rm.registry. Regi stryCont ext Factory" />

<property name="java. nam ng. provi der.url" value="rm :// nyot her host: 1099" />
</ Jndi Confi gurati on>

Scheduler Configuration

SchedulerConfiguration
Attribute Description Required

maxThreads The maximum number of worker threads 1
that the scheduler uses.

Examples

<Schedul er Confi gurati on maxThr eads="10" />

TCP Configuration

TcpConfiguration
Attribute Description Required
internalHost This is only applicable when the server is 0.1

behind a NAT firewall.

This becomes the internal address the server
is known by and the host address in
ServerConfiguration is the external address.

% this may change in the future

Clients will attempt to connect to
ServerConfiguration/host first. If that fails,
they will try to connect to internalHost

port The port number that the server runs on. 0.1
Defaults to 3030.
jndiPort The JNDI port, if an embedded JNDI 0.1

provider is being used. Defaults to 3035.

Examples

Other Configuration Files

Log4j Configuration File

OpenJMS uses the Jakarta Log4J logger component, which is configured through an XML
file. The LoggerConfiguration element, in the OpenJMS configuration file points to this file

The sample Log4J configuration file is shown below but you should consult the web site
http://jakarta.apache.org/log4j/docs/index.html for more information

Configuration of an RMI OpenJMS Server

This section describes how to configure an RMI OpenJMS Server using an Oracle database
where the client and the server are running on the same machine. The RMI Registry, which is
embedded in the OpenJMS server, is running on port 1099. The JNDI Server registers with the
connection factory and subsequently the OpenJMS binds its connection factories in the root
JNDI context. The client must perform a lookup on the RMI registry to get a reference to the
root JNDI context.

192.168.128.104

Oracle atabse

Embedded RMI

Registry
port 1099

Configuration of a TCP OpenJMS Server

This section describes how to configure an TCP OpenJMS Server using the MySQL database.
In this configuration the client and server are running on different machines. The JNDI server,
which the client initially uses to discover the connection factories is running on port 3035 and

the OpenJMS sever, which the client connects to and exchanges messages with is running on
port 3030.

192.168.128.104

MySQL atabse

192.168.128.105

Support for External JNDI Provider

OpenJMS can be run against an external JNDI compliant naming service. In the configuration
illustrated below, the JNDI provider is running on 192.168.128.106, the OpenJMS server on
192.168.128.104 and the client on 192.168.128.105.

The OpenJMS Server and the OpenJMS client both utilise the JNDI provider to bind and
lookup connection factories and administered destinations respectively.

192.168.128.106 192.168.128.104

MySQLsatabse

192.168.128.105

The OpenJMS configuration files, supporting this configuration are show below.

Sample Database Configurations

This portion of the document provides sample configuration files for some of more popular
databases.

Oracle
The following configuration requires classes12.zip (or equivalent) to be in the classpath.

Sybase
The following configuration requires jconn2.jar (or equivalent) to be in the classpath.

MySQL

The following requires mm.mysql-2.0.4-bin.jar (or equivalent) to be in the classpath. The
driver can be downloaded from http://mmmysqgl.sourceforge.net/.

HSQL

The following requires hsgldb_1.61.jar (or equivalent) to be in the classpath. The driver can
be downloaded from http://hsgl.sourceforge.net.

Interbase

The following configuration requires interclient.jar (or equivalent) to be in the classpath.
NOTE: you need to run InterServer 2.02 or higher. Earlier versions will not work with dbtool.

JDBM®

10 Sypport for JIDBM will be dropped in the near future

Configuring a JDBC Database

OpenJMS may be configured to use an JDBC 2.0 compliant driver to support persistent
messages. The following databases have been tested.

Database Version Web Site

Oracle8i 8.1.7 http://www.oracle.com/

Sybase ASE 12.0 http://www.sybase.com/

Borland InterBase 6.0.1 http://www.borland.com/interbase
MySQL 3.23.39 http://www.mysgl.com/

HSQL 1.61 http://hsql.sourceforge.net

The following tasks must be completed to configure OpenJMS and the database
1. Add the JDBC driver to the classpath

2. Edit the OpenJMS configuration file

3. Execute the dbtool to create the database tables

Adding JDBC Driver to the classpath

Add the relevant JDBC driver to the classpath. A list of databases and their associated drivers
is shown below.

Database Version JDBC Driver
Oracle8i 8.1.7 classes12.zip

Sybase ASE 12.0 jeconn2.jar

Borland InterBase 6.0.1 interclient.jar

MySQL 3.23.39 mm.mysql-2.0.4-bin.jar
HSQL 1.61 hsgldb_1.61.jar

The openjms scripts ignore the CLASSPATH set in the global environment. To customize the
CLASSPATH, you need to create a setenv.bat script (setenv.sh script on UNIX) in the
$OPENJMS_HOME/bin directory. Eg: to configure the CLASSPATH for Oracle, setenv.bat
might look like:

set CLASSPATH=c:/oracle/jdbc/lib/classesl2.zip

Edit the OpenJMS configuration file

Edit the OpenJMS configuration and modify the attributes of the DatabaseConfiguration
element. Refer to Sample Database Configurations for examples.

Execute the dbtool application

The dbtool application may be used to create, drop, and recreate OpenJMS database tables and
indexes. To create tables, run the following:

[wi ndows]
cd <openjns root dir>\bin
dbt ool . bat —create —config <config file> xm

[uni x]
cd <openjns root dir>/bin
dbt ool . sh —create —config <config file> xm

What If dbtool doesn’t work?

The dbtool application may not support all available JDBC drivers, due to buggy JDBC
implementations. In this case, the tables and the indexes must be manually created. The
OpenJMS distribution ships with SQL scripts for most popular databases. These scripts are
located in <openjms root dir>/config directory and are in the form of create_db.sql (i.e.
create_oracle.sql, create_mysql.sql).

For example to manually create the tables and indexes for an Oracle database use the
following command line
sqgl pl us user/password @reate_oracl e. sql

Starting the Server

Once the database has been correctly configured the OpenJMS server can be started. This part
of the document describes how to start an RMI based and a TCP based server.

RMI Server

This particular example will start a server with an embedded JNDI provider, as illustrated
below. The server uses the JNDI provider to bind all its connection factories and administered
destinations.

Oracle atabse

192.168.128.104

Embedded RMI
Registry
port 1099

The OpenJMS server uses the following configuration file

<I-- Optional. If not specified, no destinations will be created -->
<Admi ni st er edDest i nati ons>
<Admi ni st eredTopi ¢ nanme="t opi c1">
<Subscri ber nanme="subl" />
<Subscri ber name="sub2" />
</ Admi ni st er edTopi c>

<Admi ni st er edQueue nanme="queuel" />

<Admi ni st eredQueue nane="queue2" />

<Admi ni st er edQueue nanme="queue3" />
</ Admi ni st er edDest i nat i ons>

</ Confi gurati on>

To start the server go to the bin directory and enter the following command

[wi ndows]
startup

[uni x]
./startup.sh

A message log, similar to the one shown below, will be displayed on your console. The
OpenJMS server starts a number an embedded RMI Registry, which it uses to bind a reference
to the JndiServer, the OpenJmsServer and the JmsAdminServer. Next it starts all the low level
services and facilities. Finally it binds any configured administered destinations and
connection factories to the root JNDI Context.

OpenJMS 0.7.5 (build 17)

Exol ab Inc. (C) 1999-2003. All rights reserved. openjms. sourceforge. net

23:31: 04.505 INFO [rmain] - Instantiated the Rm RegistryService service on port 1099
23:31: 04.515 INFO [main] - Enmbedded RM Registry running on port 1099

23:31:04.976 INFO [main] - Registered the service Jndi Server with the registry.

23:31: 04.976 INFO [main] - Started service [Rm RegistryService]

23:31:04.976 INFO [main] - Started service [ThreadPool Manager]

23:31: 04.976 INFO [main] - Started service [Event Manager Thr ead]

23:31: 05.156 INFO [main] - Renoved expired nessages.

23:31:05.156 INFO [main] - Started service [DatabaseService]

23:31:05.156 INFO [main] - Started service [Schedul er]

23:31:05.156 INFO [main] - Started service [LeaseManager Reaper]

23:31: 05.156 INFO [main] - Registering Garbage Collection every 60000 for nenory.
23:31:05.166 INFO [main] - Registering Garbage Coll ection every 120000 for other resources.
23:31:05.166 INFO [main] - Started service [GCCol |l ecti onService]

23:31:05.336 INFO [main] - Started service [MessageManager]

23:31:05.356 INFO [main] - JMS Server is bound to //|ocal host: 1099/ OpenJMsSer ver
23:31:05.376 INFO [main] - JM5 Admin Server is bound to //|ocal host: 1099/ JmsAdni nSer ver

An interaction diagram of the startup sequence is presented below.

: Administrator : OpenJMS : Embedded : Embedded : OpenJMS
Server RMIRegistry JNDI Server Admin Serwer

start

| create ‘

create /u

| 1
register ‘
|

start services

create

|
bind administered destinations

_ L
o g
|
|
|

register
bind connection factories

TCP Server

The TCP Server example, illustrated below, also utilises an embedded JNDI server.
192.168.128.104

MySQLatabse

The configuration file for the TCP server is shown below

To start the server go to the bin directory and enter the following command.

A message log, similar to the one shown below, will be displayed on your console. The
OpenJMS server starts the embedded JNDI server, which listens for connections on port 3035,
starts all the low level services and facilities, binds the connection factories and administered
destinations and finally listens for connections on port 3030.

An interaction diagram of the startup sequence is presented below.

: Administrator : OpenJMS : Embedded : OpenJMS
Server JNDI Server Admin Server

L start e

create

start listener on port 3035

|
< |

start services

create

bind connection factories

\
\
bind administered destinationsw

start listener on port 3030

-

|
ki
|
|
|
|

RMI Server with External JNDI Provider

This particular example will start a server using an external JNDI provider. In this example we
illustrate this configuration using the rmiregistry JNDI provider

192.168.128.106 192.168.128.104

Oracle iatabse

OpenJMS RMI Server

To start the external jndi provider change to the bin directory and enter the following
command

[wi ndows]

startreg 3031

[uni x]

./startreg.sh 3031

This starts rmiregistry on port 3031.

The OpenJMS Server configuration is as follows.

To start the server go to the bin directory and enter the following command.

The OpenJMS server starts all the low level services and facilities. It then connects to the
JNDI Server and binds any configured administered destinations and connection factories to
the root context.

. 916 | NFO
. 916 | NFO
. 916 | NFO
. 367 | NFO
. 367 | NFO
. 367 | NFO
. 367 | NFO
. 377 1 NFO
. 647 | NFO
. 747 1 NFO
. 788 | NFO

[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai
[mai

n]
nj
n]
nj
n]
nj
n]
nj
n]
nj
n]

- Registered the service Jndi Server with the registry.
- Started service [ThreadPool Manager]
- Started service [Event Manager Thr ead]

- Renopved expired nmessages.

- Started service [DatabaseService]

- Started service [Schedul er]

- Started service [LeaseManager Reaper]
- Started service [GCCol |l ecti onServi ce]
- Started service [MessageManager]

- JM5 Server is bound to //|ocal host: 1099/ OpenJMsSer ver

- JM5 Admin Server is bound to //|ocal host: 1099/ JnsAdm nSer ver

An interaction diagram of the startup sequence is presented below.

: RMI Regqistry : OpenJMS

Admin Server

Common Problems

start services

P

lookup jndi server

: Administrator : OpenJMS . External JNDI
Server Provider
start |
‘ setup
‘ register
start l

get initial context

bind connection factories

bind adm inistered destinations

create
lookup jndi server
get initial context
bind server

bind server

Database Lock Not Released

If you are using a JDBM persistent store and the OpenJMS server abnormally terminates the
database lock will not be released. Subsequently trying to restart the server will yield the
following error

18: 04: 22. 010 I NFO
18: 04: 22. 020 | NFO
18: 04: 22. 070 | NFO

j avax. j ms. JMSExcepti on:

| ayer:

at org.exol ab.jms. server.JmsServer. <init>(JmsServer.java: 261)

[mai n]
[mai n]
[mai n]

A

|
|
:
|
|
|
|

- Creating JNDI Server org.exolab.jms.jndi.ipc.|pcdndi Server
- Started |PC JNDI Server on port 3035
- Openi ng dat abase: openj nms. db

org. exol ab. j ns. server. Fai | edToCr eat eSer ver Except i on:
Cannot create persistency

Cannot acquire |lock to the database openjns

JnsServer constructor failure

at org. exol ab. j ns. server.JnsServer. mai n(JnsSer ver. j ava: 98)

The solution is to delete the database lock file, which has a .lock suffix. If the database name is
openjms.db then the corresponding lock file will be openjms.lock.

Address in Use

This problem usually occurs when you start more than one OpenJMS server with the same
configuration file. You should see the following error on the console

C: \ pr oj ect s\ openj ns\ devel oprment \ openj s\ bi n>st art up

org. exol ab. j ns. server. Fai | edToCr eat eSer ver Excepti on: JnsServer constructor failure
j ava. net . Bi ndExcepti on: Address in use: JVM Bi nd

at org.exol ab. jns. server.JnsServer. <init>(JnmsServer.java: 261)
at org. exol ab. jms. server.JmsServer. mai n(JmsServer. j ava: 98)

If you need to run multiple independent OpenJMS servers then you should use separate
configuration files with different parameters.

Running Your First Programs

Overview

Now that you can start the openjms server, you are ready to run some of the example
programs. These programs are located in the src/examples directory and are intended to
showcase simple JMS features.

These examples assume you are using a RMI based server and the client and server are
executing on the same machine.

192.168.128.104

Oracle atabse

OpenJMS Server

- P> rbedded RV [Embedded INDI
Registry Server

(port 1099)

If the client and server are executing on a different machine then you must append the
following options to the command line
-jndi port <port nunber> -jndi host <host address>

Client Interaction Diagram

This interaction diagram describes the typical sequence of events when a client connects to the
OpenJMS server and creates a session. This is true for all providers and in fact the OpenJMS
examples can be run against other providers only by changing the code that connects that looks
up the ConnectionFactory. By changing the bold lines you can execute the examples against

other providers. Once the initial context has been retrieved, the client code is provider
independent.

Properties props = new Properties();
props. put (Cont ext. PROVI DER_URL, “rmi ://nmyhost: 1099/");
props. put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
org.exol ab.jns.jndi.|nitial ContextFactory.class. get Nanme());
Cont ext context = new | nitial Context(props);

The interaction diagram for all clients will typically look like this. The sequence of steps is

1. get the initial context
2. lookup a ConnectionFactory

3. create a Connection
4. create a Session

: Client . InitialContext : JNDI Provider| | _: RmiJndilnitial : Connection : Connection : Session
ContextFactory Factory
| set up jndi properties ‘ ‘ ‘ ‘
create | create ‘ i ‘ ‘ ‘
| connect
i | | |
lookup connection factory ‘ o ‘ ‘ ‘
T ‘ lookup ‘ ‘ ‘
‘ get
| | |
createConnection ‘ 1 create ‘ ‘
| | ‘
| | T
createSession ‘ ‘ ‘ ‘
\ \ \ J
| | | ; |

Single Publisher, Single Transient Subscriber

This diagram below illustrates a publisher and consumer interacting with the OpenJMS

Server.

OpenJMS Server

Subscriber

The initial example uses non-persistent messages, asynchronous message delivery and
transient subscribers. In this scenario, the subscriber must be started before the publisher to
ensure that messages are not missed. Non-persistent messages are dropped if there are no
active subscribers.

1 Start the OpenJMS server as per the RMI Server instructions described earlier.

2 Once the OpenJMS server is up and running change to the bin directory and execute
runconsumer to start a transient subscriber, which will wait for 10 messages before
existing.

[wi ndows]
runconsuner —topic topicl —count 10

[uni x]
./ runconsuner.sh —topic topicl —count 10

3 Now that the transient subscriber is up and running we can start the publisher using the
following command line, which is executed from the bin directory. This will publish 10
messages and exist.

[wi ndows]
runpubl i sher —topic topicl —count 10.

[uni x]
./ runpublisher.sh —topic topicl —count 10

Single Publisher, Single Durable Subscriber

This example uses a similar configuration except now it deals with persistent messages and
durable subscribers. A durable subscriber is registered to receive persistent messages for a
particular topic irrespective of whether the subscriber is active or inactive. Persistent messages
are stored in a database.

OpenJMS Server

Durable
Subscriber

1 Start the OpenJMS server as per the RMI Server instructions described earlier. Before
starting the server, you must ensure that the AdministeredDestinations section of the
configuration file includes the following AdministeredTopic entry.

<Adnmi ni st eredTopi ¢ nanme="t opi c1”" >
<Subscri ber name="subl” />
</ Admi ni st er edTopi c>

The above entry defines a durable subscriber subl for the topic topicl.

2 Since we are using a durable subscriber you do not need to start the consumer before the
publisher. To illustrate this we will start the publisher first.

[wi ndows]
runpubl i sher —topic topicl —persistent —count 10

[uni x]
./ runpublisher.sh —topic topicl —persistent —count 10

3 You can now start a consumer with the durable subscriber sub1 consuming messages
from topicl. This consumer will consume 10 messages and then exit.
[wi ndows]
runconsuner —topic topicl —persistent —nanme subl —count 10

[uni x]
./ runconsuner.sh —topic topicl —persistent —nanme subl —count 10

Multiple Publishers, Multiple Subscribers

The diagram below depicts multiple publishers publishing messages to the same topic and
multiple subscribers (transient and durable) consuming the messages

Transient
Subscriber

OpenJMS Server

\ Durable

Subscriber

1 Start the OpenJMS server as per the RMI Server instructions described earlier. Before
starting the server, you must ensure that the AdministeredDestinations section in the
configuration file includes the following AdministeredTopic entry.

<Adnmi ni st eredTopi ¢ nanme="t opi c1” >
<Subscri ber name="subl” />
</ Admi ni st er edTopi c>

The above entry defines a durable subscriber subl for the topic topicl.

2 Since we are using both transient and durable subscribers, it is easier if we start them
both before the publishers. In practice you can start durable subscribers until after
running the publishers. Each of the three publisher will publish 10 messages under
topicl so each consumer will be configured to receive 30 messages.

To start the transient subscriber

[wi ndows]
runconsuner —topic topicl —count 30

[uni x]
./ runconsuner.sh —topic topicl —count 30

3 To start the durable subscriber subl
[wi ndows]

runconsuner —topic topicl —persistent —nanme subl —count 30

[uni x]
./runconsuner.sh —topic topicl —persistent —nane subl —count 30

4 We can start each of the 3 publishers using by running the following command in each
console. Every message will be published as persistent

[wi ndows]
runpubl i sher —topic topicl —persistent —count 10

[uni x]
./runpublisher.sh —topic topicl —persistent —count 10

5 Each of the transient and durable consumers should receive 30 messages and then exit.

Single Sender, Single Receiver

This diagram below depicts a sender and a receiver connected to the OpenJMS server and
exchanging messages on the queuel destination

OpenJMS Server ,

Receiver

A Queue does not have a notion of transient or durable receivers.

1 Start the OpenJMS server as per the RMI Server instructions described earlier. Prior to
starting the server you must ensure that the AdministeredDestinations section of the
configuration file includes the following AdministeredQueue entry.
<Adni ni st er edDest i nat i ons>

<Admi ni st er edQueue nane="queuel” />
</ Admi ni st er edDest i nati ons>

The above entry defines the queue queuel

2 Messages send to a queue remain queues until a receiver is ready to retrieve them or the
message expires. There is no need to start the receiver before the sender as in the
publish-subscribe model.

To start a receiver enter the following command line in the console
[wi ndows]
runrecei ver —queue queuel —count 10

[uni x]
./runreceiver.sh —queue queuel —count 10

3 To execute the sender enter the following command in the sender console.

[wi ndows]
runsender —queue queuel —count 10

[uni x]
./runsender.sh —queue queuel —count 10

Single Senders, Multiple Receivers

This next example shows what happens when multiple receivers are attached to the same
queue. Messages on a queue can only be consumed by one of the attached receivers unlike
messages on topic destinations, which are consumed by all registered subscribers.

‘ OpenJMS -

Receiver

‘\\\’.‘ Receiver

1 Start the OpenJMS server as per the RMI Server instructions described earlier. Prior to
starting the server you must ensure that the AdministeredDestinations section in the
configuration file includes the following AdministeredQueue entry.

<Admi ni st er edDest i nati ons>

<Admi ni st er edQueue nanme="queuel” />
</ Admi ni st er edDest i nati ons>

The above entry defines the queue queuel

2 We need to start two receivers we need to enter the following command line in each
receiver’s console. The count argument denotes the number of messages each receiver
will consume before existing
[wi ndows]
runrecei ver —queue queuel —count 10

[uni x]
./runreceiver.sh —queue queuel —count 10

3 To execute the sender enter the following command in the sender console. The sender will
publish 20 messages.
[wi ndows]
runsender —queue queuel —count 20

[uni x]
./runsender.sh —queue queuel —count 20

4 Each receiver should receiver 10 messages (none of which are duplicate) and exit.

Multiple Senders, Multiple Receivers

You can obviously have multiple senders publishing messages to the same queue as shown
below. The previous example provides enough information to execute this scenario.

OpenJMS Server

Using the Administration Tool

Introduction

OpenJMS distributes an Admin GUI tool, shown below, to facilitate the management of
destinations and durable consumers.

E: OpenIMS Administration
File Actions

@ [OpendMSServer
& topic

|j| sub @
|j| sub2 @

& 7 queuet
& [queue2
& [queue3

[I=RE=1 =1

Cannected - Online Mode

The tools allows the administrator to

Create and delete durable queues and topics

Add and remove durable consumers for a topic
Deregister active consumers

Monitor number of messages for a queue
Monitor number of messages per topic consumer
Start and stop the OpenJMS server

Purge persistent messages

RS R

Future releases of the tool will support
v" Management of non-durable destinations
v" Management of multiple servers from a single console

Running the Administration Tool

To start the Administration Tool go to the bin directory and enter the following command:

[Wi ndows]
adm n

[uni x]
./ adm n. sh

By default, the Administration Tool will use the OpenJMS configuration file:
${openjms.home}/config/openjms.xml

If the OpenJMS server was started with an alternative configuration file, using the —config
command line parameter, then the Administration Tool should be passed this configuration as
well. Eg, if the server was run with the command:

startup —config ../config/tcp_jns.xm

The corresponding command to start the Administration Tool would be:

adm n —config ../config/tcp_jms.xm

Menu Options

The menu options, which are described below, are context sensitive.

Menu Option Description

File->Exit Exit the administration tool

Action->Refresh Updates the display with the most recent
information

Action->Connection->Online Connection Connect to an active OpenJMS server.

Action->Connection->Offline Connection This option is used to work offline and

connects to the corresponding data store. This
should be used for all offline maintenance

Action->Disconnect Disconnect from a server

Action->Start OpenJMSServer Start the OpenJMS server, using the
configuration file specified during startup

Action->Stop OpenJMSServer Stop the OpenJMS server.

Modes of Operation

The administration tool offers two modes of operation. In online mode the tool connects to an
active OpenJMS server and in offline mode the tool connects directly to the OpenJMS
persistent store.

Online Mode

Online mode is only possible if the OpenJMS Server is running. The administration tool
makes a connection to the server, and requests all information such as topics and consumers
directly from the server.

In this mode all information is available. The tool displays destinations, durable consumers
and the number of outstanding messages. Additionally, the tool will highlight durable
consumers that are currently active in the server.

Information displayed on the console is not updated dynamically. Instead, the administrator
must select the refresh menu option to retrieve the latest information

Offline Mode

Offline mode is a convenient way to access and update information on durable queues and
topics only, when the server is not active. It also provides a means to purge processed or
expired messages while the server is offline for maintenance. The offline mode behavior
differs depending on the underlying persistent store being used.

If the system is using an RDBMS database, the appropriate configuration information, for
making a connection to the database, is retrieved from the specified configuration file. The
administrator must ensure that the OpenJMS server is not active while using this mode
since could compromise the integrity of the system.

If the system is using the JDBM database a file selector is displayed to select the
corresponding database file.

E%Select OpenIMS Database to connect to x|
Look in: Ctest v| 9 |@ 3| B8 8

[Openms.db

File name: |Opendms db | | open

Files of type: | Database Files(*.dh) - | Cancel

Selecting the database file and pressing open will initiate a connection to the database. The
operation will fail if the selected file is not a valid OpenJMS database. Check the OpenJMS
server configuration file to locate the name of the file.

The administrator can also create a new database file simply by entering the name, without the
.db suffix. To use the new database file simply modify the entry in the server configuration file

<Dat abaseConfi gurati on

gar bageCol | ecti onl nt er val =" 180"

gar bageCol | ecti onBl ockSi ze="500"

gar bageCol | ecti onThreadPriority="5">

<JdbnDat abaseConfi gurati on nanme="${ openj ns. hone}/ openj ns. db" />
</ Dat abaseConfi gurati on>

A file locking mechanism is used to lock the database and prevent simultaneous access by the
admin tool and the OpenJMS server.

Understanding the Display

The figure below outlines the various elements of the display. The top-level node in the
hierarchy is essentially the OpenJMS server or persistent store. Inside the root node there is a
node for each persistent destination. If the destination is a topic then a node will exist for each
durable consumer. Nodes can be expanded or collapsed as necessary in the usual manner by
selecting the node handle or double clicking on the node itself.

B3 OpenIMS Administration S [=1E3
aea ——p» File Actions

main menu

@ [OpendMSServer
@ 3 topic

consumer

B sub1 @< - information

consumer El suh? @
&] queust
destination | queue?
@] queue3

EIE@

Connected - 2nline Mode <¢—— message area

The text information displayed next to some nodes denotes the number of outstanding
messages for a particular queue or a durable subscriber. If the text is displayed in red it
indicates this consumer is currently active

Context Sensitive Commands

Context sensitive commands are available for the different nodes in the tree. Pressing the right
mouse button on any node will display the available commands for that object.

OpenJMS Server Node

Add Queue

Select the OpenJMSServer node, right-click the mouse button and choose Add Queue. When
the following dialog box appears, enter the name of the queue and press OK.

E&fﬁ Create Administered Queue x|

Enter the queue name

|new—queue|

OK Cancel

The name of the queue must be unique and any attempt to create an existing queue will display
an error message.

Add Topic

Select the OpenJMSServer node, right-click the mouse button and choose Add Topic. When
the following dialog box appears, enter the name of the topic and press OK.

E‘g Create Administered Topic X|

Enter the topic name

hupic2|

OK Cancel

The name of the topic must be unique and any attempt to create an existing topic will display
an error message.

Purge Messages

Select the OpenJMSServer node, right-click the mouse button and choose Purge Messages. A
dialog box will be displayed asking the user to confirm the deletion of all processed messages.
Pressing Yes will initiate the process.

[Confirm Deletion x|

E Are you sure you want to purge all
processed messages.

Yes Ho

This can be a very CPU intensive operation, especially if there are many messages to
process.

Topic Node

Add Consumer

Select the corresponding topic node, right-click the mouse button and choose Add Consumer.
When the following dialog box appears enter the unique durable consumer name and press
OK.

E'-g,f"';l]pen.lHS Conzumer Creatiol x|

Enter a unigque consumer naime

OK Cancel

The operation will fail if the consumer name is not unique across all topics.

Delete Topic

Select the corresponding topic node, right-click the mouse button and choose Delete Topic. A
confirmation dialog box will be display asking the user to confirm the action. Pressing Yes will
initiate the request.

E%i Confirm Deletion x|

E Are you sure you want to delete
selected Topic: topic1

Yes Ho

Deleting a topic will automatically delete all registered durable consumers and all associated
persistent messages.

Queue Node

Delete Queue

Select the corresponding queue node, right-click the mouse button and choose Delete Queue.
A confirmation dialog box will be display asking the user to confirm the action. Pressing Yes
will initiate the request.

[Confirm Deletion E x|

E Are you sure you want to delete
selected Queue: queue3

Yes Ho

Deleting a queue will automatically delete all associated persistent messages.

Consumer Node

Deactivate Consumer

When a durable consumer is active with the server the corresponding text, on the display, will
be highlighted in red. Once a durable consumer is active it prevents other clients from
connecting using that consumer name. The administrator can use this option to deactivate the
durable consumer within the server.

To deactivate a consumer select the consumer node, right click the mouse button and choose
Deactivate Consumer. A confirmation dialog box will be displayed asking the user to confirm
the action. Pressing Yes will deactivate the consumer.

Eg;"; Confirm Deletion 55'] x|

Are you sure you want to De-Activate
selected Consumer: sub1

¥es Ho

The corresponding text, on the display, should now be in black indicating that the consumer
has been deactivated.

Delete Consumer

To deactivate a consumer select the consumer node, right click the mouse button and choose
Delete Consumer. A confirmation dialog box will be displayed asking the user to confirm the
action. Pressing Yes will delete the consumer and remove all associated persistent messages
from the database.

[Confirm Deletion 3 x|

Are you sure you want to delete
selected Consumer: sub2

¥es Ho

Using the OpenJMS Admin API

Since the JMS specification does not cover administration features of a messaging system
most providers support such features through a proprietary interface. OpenJMS has a
proprietary administration API, which can be used to manage the lifecycle of destinations,

subscribers and messages.

Features

The table below provides a brief description of the features available through the

administration API*.

Feature

Description

getDurableConsumerMessageCount
getQueueMessageCount
addDurableConsumer

removeDurableConsumer
durableConsumerExists
getDurableConsumers

unregisterConsumer
isConnected

getAllDestinations
addDestination
removeDestination

stopServer

purgeMessages

Return the number of unprocessed messages for a
particular consumer

Return the number of unprocessed messages on a
particular queue

Add a durable consumer for a particular topic
destination.

Remove a particular durable consumer
Check if the specified durable consumer exists

Return a list of durable consumer names for a
particular topic destination

Deactivate an active durable consumer

Check to see if the given consumer is currently active
in the server

Return a list of all persistent destinations
Add a destination with a particular name

Destroy a destination and all associated messages and
consumers.

Terminate the JMS Server. If it is running as a
standalone application then exit the application. If is
running as an embedded application then just
terminate the thread

Purge all processed persistent messages from the
database.

1 Consult the org.exolab.jms.admin.JmsAdmin JavaDoc for the latest set of features

Using the API

Accessing the OpenJMS Admin API

OpenJMS uses the specified JNDI provider to register the JMSAdminServerlfc interface. The
URL that is used to bind to the JNDI provider is displayed on the console when the server is
started.

The example, shown below, illustrates how to get access to the JMSAdminServerlfc to an
RMI OpenJMS server.

Using the OpenJMS Admin API

Once you have access to JmsAdminServerlfc interface you can call any method as illustrated
below

The exolabcore library

The OpenJMS distribution uses the exolabcore-version.jar library. This source code for this
library is part of the openjms CVS repository and can be checked out using the following CVS
command

cvs —d: pserver:anoncvs@irtual s.intalio.com/cvs/openjnms |ogin

passwor d=anoncvs

cvs —d: pserver:anoncvs@irtual s.intalio.com/cvs/openjns exol abcore

OpenJMS over SSL

OpenJMS SSL is only available for OpenJMS IPC and has been implemented using Sun
Microsystems’ JSSE (http://java.sun.com/products/jsse) for the initial release. JSSE 1.0.2 is
required for JDK 1.2 and 1.3. As of JDK1.4 JSSE is part of the standard distribution.

Follow the JSSE installation instructions to install the 1.0.2 product. Additional information is
also available JSSE 1.0.2 Guide.

Once you have downloaded and setup JSSE, a trustore (security certification) must be
generated. A sample one is provided in the OpenJMS bin directory (cacerts) but you can
create your own use the keytool utility that ships with JSSE.

keyt ool -genkey -keystore filename -keyalg rsa
where filenane is the nane of the trustore

Next you must modify the OpenJMS Server configuration file. In particular you must change
the value of the scheme attribute in the Connector element.

<Connect or s>
<Connect or schenme="t cps">
<Connecti onFact ori es>
<QueueConnecti onFact ory nanme="JnsQueueConnecti onFactory" />
<Topi cConnecti onFact ory name="JnmsTopi cConnecti onFactory" />
</ Connect i onFact ori es>
</ Connect or >
</ Connect or s>

If the JSSE JAR files are stored in the lib/ext directory, then they will be automatically picked
up by the JVM. If this is not the case then the jar files should either be accessible by setting the
CLASSPATH in command line or the environment classpath variable. The required libraries

are
Library Version Description
jcert.jar 1.0.2
jnet.jar 1.0.2
jsse.jar 1.0.2

Finally you must create (or modify) the setenv.[bat|sh] (see Environment Scripts) to pass
some properties across to JSSE via the JAVA_OPTS environment variable.. The following
configures SSL using the sample trust store:

set JAVA OPTS=-D avax. net.ssl.trust Store=cacerts -0 avax. net.ssl. keyStore=cacerts \
-D avax. net. ssl . keySt or eType=j ks -Dj avax. net. ssl . keySt or ePasswor d=ab1234

If the system property: javax.net.ssl.trustStore is defined, then the TrustManagerFactory
attempts to find a file using the filename specified by that system property, and uses that file
for the KeyStore. If that system property is not specified, and the file <java-
home>/lib/security/jssecacerts exists, it will be used. Otherwise, it will use the file <java-
home>/lib/security/cacerts if it exists.

You can debug the JSSE component by setting the system property -Djavax.net.debug=ssl to
turn.

Clients connecting to the OpenJMS SSL server must specify the trustore property -
Djavax.net.ssl.trustStore=filename otherwise the server will reject the connection.

Typical Configurations

RMI, Oracle, Embedded JNDI Server

TCP, MySQL, External JNDI Server

RMI, JIDBM, External JNDI Server

OpenJMS Performance

This section is an attempt to crudely quantify the performance of OpenJMS for both persistent
and non-persistent messages against different databases. The test has a single publisher
connecting to the server and publishing 10,000 messages

The tests were conducted on a PI1l 800MHz with 256MB memory.

publishing 10000 non- publishing 10000 persistent
persistent messages messages
Oracle 8i 500 msgs/second 64 msgs/second
MySQL 500 msgs/second 152 msgs/second
JDBM 526 msgs/second 1 msg/second™

12 only published 1000 messages

Appendix A: OpenJMS with Jakarta Tomcat

Introduction

This application note illustrates how to integrate OpenJMS (http://openjms.sourceforge.net/)
with the Jakarta Tomcat (http://jakarta.apache.org/tomcat/index.html). It deals exclusively
with Tomcat v4 (or Catalina), which is the next generation servlet/jsp container and OpenJMS
v.0.7.

The article assumes that the reader is familiar with both OpenJMS and Tomcat and does not
describe how to install or use either product. Therefore, to allow you to work through this note
we recommend that you install and familiarize yourself with the products by visiting their
respective web sites.

Dependencies

The examples in this application note has been tested with

v" OpenJMS v0.7.5, which conforms to v1.0.2 of the specification
(http://java.sun.com/products/ims) and is available at
http://sourceforge.net/project/showfiles.php?group id=54559

v’ Jakarta Tomcat v4.1.18, which conforms to v2.3 of the Servlet specification
(http://java.sun.com/products/servlets) and v1.2 of the Java Server Pages (JSP)
specification (http://java.sun.com/products/jsp) and is available at
http://jakarta.apache.org/builds/jakarta-tomcat-4.0/release/v4.1.18/

Context Diagram

The diagram below illustrates the relationship between the various Tomcat and OpenJMS
components. The OpenJMS Web Application consists of JMS client code talking to the
OpenJMS Client Library. The application is deployed within the Tomcat container.

In this configuration the OpenJMS server is executing outside the Tomcat container and may
even be executing on another machine on a different network.

4 Jakarta Tomcat N

JMS Application

OpenJMS Client |
Library ‘

| Web Application |

Y

OpenJMS Server

The user can access the OpenJMS application by entering the corresponding URL in the
browser or application. Tomcat will resolve the URL and redirect it to the corresponding
servlet, which will execute and then return a response back to the user.

In the example that follows, Tomcat is used to serve both dynamic and static web pages
therefore functioning as a typical web server in addition to a servlet and JSP container.

Writing an OpenJMS Web Application

This section describes how to write and package a trivial OpenJMS Web Application, which
simply connects to the OpenJMS Server and publishes messages. The interaction diagram,
illustrated below, depicts the sequence of events between the various components.

: Browser : Tomcat : Simple : Simple - JNDI Provider : OpenJMS
Container Publisher.html Publisher.class Server

get SimplePublisher.html | retrieve

enter url

i

enter topic

enter count

i

submit query invoke

connect

get connectionfactory

|
. . !
create topic publisher
I
publish messages | ‘

close connection ‘

P

|
‘ get connection ‘
create session ‘
I
‘ formulate response
\
\ \ \

The table, below, provides a brief description of each of the components in the interaction
diagram. Further details are provided in subsequent sections.

Component Description
Browser Represents the client browser making the requests to Tomcat.
Tomcat Container The Servlet/JSP container

SimplePublisher.html A static HTML page containing a form, which gathers information
to publish messages to the OpenJMS Server

SimplePublisher.class A servlet class that interacts with the OpenJMS server
JNDI Provider Used to bind and lookup OpenJMS connection factories
OpenJMS Server A JMS v1.0.2 compliant server

The sequence of events is as follows. The user will enter a URL to access the
SimplePublisher.html page

url |rr‘ni:,",fI|:u:th|:|5t:1 099/ IndiSerser

topic |jima

count |2III

Submit Cueny

Once the page is displayed in the browser, the user will complete the url, topic and count
fields.

Field Description

url This denotes the URL of the JNDI Server, which holds the OpenJMS
ConnectionFactories. The ConnectionFactories are used to bootstrap a
connection to the OpenJMS Server. The form of the URL depends on
the configuration of the OpenJMS Server.

topic This is the name of the destination that messages will be published
under. The messages are in the form “publish message X”, where X is
the message number.

count The number of messages to publish.

When the user presses the Submit Query button the information in the form will be send across
to Tomcat and used to invoke the SimplePublisher servlet.

The servlet will connect to the OpenJMS server, create a TopicPublisher using the topic form
parameter, publish count messages and then close the connection. On successful completion,
the user should see the following response in their browser

Published 20 messages on topic jima to url rmi://localhost:1099/JndiServer.

The application itself is not useful but it does provide all the information necessary to integrate
the two components.

SimplePublisher.html

The HTML code includes the form, which gathers the user information and submits a request
to the SimplePublisher servlet.

<ht ml >
<title>
Si npl e Publ i sher
</title>
<body>
<form net hod="get" action="../servlet/Si npl ePublisher">

<tabl e col s="2" cel | spaci ng="10">
<tr>
<td>url </td>

SimplePublisher.java

Below is the servlet code for this example. It uses the information passed across by the user to

retrieve a ConnectionFactory from the JNDI provider, connect to the OpenJMS server, create a
publisher and publish messages to it. Finally, it closes the connection and returns a response to
the user.

If a problem is encountered, while this request is being processed, a ServletException is
returned to the user.

Compiling and Packaging
To compile the servlet you need the following libraries

openjms-client- The core openjms client library

0.7.5.jar

openjms-rmi-0.7.5.jar Additional classes for rmi based OpenJMS server
exolabcore-0.3.4.jar Core Exolab library

jms_1.0.2a.jar Java Message Service (JMS) API

In addition, before we package the web application we must create the web.xml descriptor file,
which identifies the servlet and its corresponding URL mapping.

<url - pattern>/openjns/*</url -pattern>
</ servl et - mappi ng>
</ web- app>

Finally, we must package all the above components in a Web Application Archive (war),
which is identical, in format, to JAR files. The content of openjms.war, which is shown below,
complies with the structure identified in the Servlet specifications.

Wed Cct 03 16:18:36 GMI+11: 00 2001 META- | NF/
Wed Oct 03 16:18:36 GMI+11: 00 2001 WEB- | NF/
Wed Cct 03 16: 18: 36 GMI+11: 00 2001 WEB- | NF/ cl asses/
Cct 03 16:18:38 GWMr+11: 00 2001 WEB- | NF/ |i b/
Wed Cct 03 16:18: 36 GMI+11: 00 2001 servl ets/
Wed Cct 03 16: 18: 36 GMI+11: 00 2001 buil d/
Wed Cct 03 16:18:36 GMr+11: 00 2001 di st/
667 Wed COct 03 16:18: 36 GMIr+11: 00 2001 WEB- | NF/ web. xm
3752 Wed Cct 03 16:18: 36 GMr+11: 00 2001 WEB- | NF/ cl asses/ Si npl ePubl i sher.j ava
4279 Wed Cct 03 16: 18: 38 GMI+11: 00 2001 WEB- | NF/ cl asses/ Si npl ePubl i sher. cl ass
268061 Wed Cct 03 16:18: 38 GMI+11: 00 2001 WVEB- | NF/ | i b/ openj ms-client-0.7.jar
44025 Wed Cct 03 16:18:38 GMr+11: 00 2001 WEB- I NF/|i b/ openj ms-rm -0.7.] ar
124524 Wed Cct 03 16:18:38 GMIT+11: 00 2001 WEB- | NF/ | i b/ exol abcore-0.3. 1. jar
27724 \W\ed Cct 03 16:18:38 GMIT+11: 00 2001 WEB-INF/1ib/jms_1.0.2a.jar
757 Wed Cct 03 16:18: 36 GMr+11: 00 2001 servl ets/ Si npl ePubl i sher. ht m
51 Wed Cct 03 16:18:36 GWMI+11: 00 2001 META- | NF/ MANI FEST. MF

[cNeoNoNoNoNoNe]
3
o

The archive contains all the libraries, the servlet and associated HTML files.

Deploying the OpenJMS Web Application

We must follow the following steps to deploy the archive, generated above, in Tomcat.
v' copy and unpack the archive in Tomcat’s webapps directory.

v modify Tomcat’s server.xml file and add a new Context.

v’ restart Tomcat

v’ start OpenJMS server

Unpack the Web Application

Locate the webapps directory in your Tomcat installation, create the openjms subdirectory and
unpack the archive.

The directory structure should look be similar to this.

webapps/ openj nms

webapps/ openj ms/ META- | NF

webapps/ openj ms/ META- | NF/ MANI FEST. MF

webapps/ openj ms/ VEB- | NF

webapps/ openj s/ WEB- | NF/ cl asses

webapps/ openj s/ WWEB- | NF/ cl asses/ Si npl ePubl i sher.j ava
webapps/ openj ms/ WEB- | NF/ cl asses/ Si npl ePubl i sher. cl ass
webapps/ openj ns/ WEB- | NF/ | i b

webapps/ openj ms/ WWEB- | NF/ | i b/ openj ms-client-0.7.jar
webapps/ openj ms/ WEB- | NF/ | i b/ openj ms-rmi -0.7.j ar
webapps/ openj ms/ WWEB- | NF/ | i b/ exol abcore-0.3.1.jar
webapps/ openj ms/ WEB- | NF/ | i b/j ms_1. 0. 2a. j ar

webapps/ openj s/ WEB- | NF/ web. xni

webapps/ openj ns/ servl ets

webapps/ openj s/ ser vl et s/ Si npl ePubl i sher. ht ni
webapps/ openj ns/ bui | d

webapps/ openj ns/ di st

Modify the server.xml configuration file

In Tomcat’s server configuration file, add a new context that defines the openjms web
application. The configuration redirects URLS in the form of
http://localhost:2222/openjms/...to the web application we have just deployed.

<Server port="2220" shutdown="SHUTDOMN' debug="0">
<Servi ce name="Tonctat - St andal one" >
<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->
<Connect or cl assName="or g. apache. cat al i na. connector. http. H t pConnect or "
port="2222" m nProcessors="5" nmaxProcessors="75"
enabl eLookups="true" redirectPort="2223"
accept Count =" 10" debug="0" connecti onTi meout =" 60000"/ >
<Engi ne nane="St andal one" def aul t Host ="| ocal host" debug="0">
<Logger cl assNane="org. apache. catal i na. | ogger. Fi | eLogger"
prefix="catalina_|log." suffix=".txt" timestanmp="true"/>
<Real m cl assNane="or g. apache. cat al i na. real m Menor yReal ni' />
<Host nane="|ocal host" debug="0" appBase="webapps" unpackWARs="true">
<!-- Tontat Root Context -->
<Cont ext path="" docBase="ROOI" debug="0"/>

<!'-- Sinpl ePubl i sher exanples -->

rel oadabl e="t rue" >
<Logger cl assNane="org. apache. catal i na.| ogger. Fil eLogger"
prefix="local host _exanpl es_| og." suffix=".txt"
ti mestanmp="true"/>
</ Cont ext >
</ Host >
</ Engi ne>
</ Servi ce>
</ Server>

Restarting Tomcat

Restart Tomcat, using either catalina or tomcat scripts files located in the bin directory. If
server comes up without any problems, the following will be displayed on the console.

Starting service Tontat - St andal one
Apache Tontat/ 4. 0- b8-dev

Starting the OpenJMS Server

For simplicity use the out-of-the-box RMI/JDBM configuration, openjms.xml for the server.
Change to the bin directory of the OpenJMS installation and enter the following command
line.

start up. bat

If the server has successfully started then the following output should appear in the console.

OpenJMS 0.7.5 (build 17)

Exol ab I nc. (C) 1999-2003. Al rights reserved. ww. openjns.org

23:22:14.303 INFO [main] - Instantiated the Rm RegistryService service on port 1099
23:22:14.303 INFO [main] - Enbedded RM Registry running on port 1099

23:22:14.673 INFO [main] - Registered the service Jndi Server with the registry.

23:22:14.673 INFO [main] - Started service [Rm RegistryService]

23:22:14.673 INFO [main] - Started service [ThreadPool Manager]

23:22:14.673 INFO [main] - Started service [Event Manager Thr ead]

23:22:14.874 INFO [main] - Renoved expired nessages.

23:22:14.874 INFO [main] - Started service [DatabaseService]

23:22:14.874 INFO [main] - Started service [Schedul er]

23:22:14.874 INFO [main] - Started service [LeaseManager Reaper]

23:22:14.884 INFO [main] - Registering Garbage Collection every 60000 for nenory.
23:22:14.884 INFO [main] - Registering Garbage Collection every 120000 for other resources.
23:22:14.884 INFO [main] - Started service [GCCol |l ecti onService]

23:22:15.074 INFO [main] - Started service [MessageManager]

23:22:15.084 INFO [main] - JMS Server is bound to //|ocal host: 1099/ OpenJMsSer ver
23:22:15.104 INFO [main] JMS Admin Server is bound to //| ocal host: 1099/ JmsAdmi nSer ver

The important thing to note is that the server uses RMI with an embedded JNDI provider,
called JndiServer, running on the localhost at port 1099. This information will be required, by
the user, to formulate the url.

Using the OpenJMS Web Application

Once the application has been deployed and both Tomcat and OpenJMS have been started
then use the following URL to interact with the application.
http://1 ocal host: 2222/ openj ns/ servl et s/ Si npl ePubl i sher. ht m

The following page, excluding the information, will be rendered in the browser.

url |rr‘ni:ﬁ|ncalhust:1 099/ IndiSemar

topic |jima

count |2IZI

submit Queny

Fill in the details, as specified above, and press Submit Query. This request will publish 20
messages under the topic jima.

Resources
OpenJMS
web site http://openjms.sourceforge.net
mailing lists http://sourceforge.net/mail/?group_id=54559
download http://openjms.sourceforge.net/download.html

specifications http://java.sun.com/products/jms

Jakarta Tomcat
web site
subscribe to mailing list
mail archive
download

specifications

http://jakarta.apache.org/tomcat/index.html

http://jakarta.apache.org/site/mail.html

http://jakarta.apache.org/site/mail.html

http://jakarta.apache.org/site/binindex.html

http://java.sun.com/products/serviets

http://java.sun.com/products/jsp

Appendix B: OpenJMS Library

Dependencies

Runtime Library Dependencies

OpenJMS Server

The OpenJMS server requires the following libraries at runtime.

Library Version Source

openjms-0.7.5.jar 0.7.5 http://openjms.sourceforge.net

jdbm.jar 0.7 http://sourceforge.net/projects/jdbm *3
log4J 1.1.3.jar 1.1.3 http://jakarta.apache.org/log4j/docs/index.html
xerces-2.3.0.jar 2.3.0 http://xml.apache.org/xerces-j/index.html
xml-apis-1.0.b2.jar 1.0.b2 http://xml.apache.org/commons
xalan-2.4.1.jar 2.4.1 http://xml.apache.org/xalan
antlr_2.7.2a2.jar 2.7.2a2 http://www.antlr.org

jdbc2_0-stdext.jar 2.0 http:/java.sun.com/products/jdbc **
jndi_1.2.1.jar 1.2.1 http://java.sun.com/products/jndi
jms_1.0.2a.jar 1.0.2a http://java.sun.com/products/jms/
jta_1.0.1jar 1.0.1 http://java.sun.com/products/jta
oro-2.0.4.jar 2.0.4 http://jakarta.apache.org/oro/index.html
tyrex-0.9.8.7.jar 0.9.8.7 http://www.tyrex.org

castor-0.9.3.jar 0.9.3 http://www.castor.org
exolabcore-0.3.5.jar 0.35 http://openjms.sourceforge.net

OpenJMS Client

The OpenJMS requires the following libraries at runtime.

Library Version Library
jms_1.0.2a.jar 1.0.2a http://java.sun.com/products/jms/
exolabcore-0.3.4.jar 0.3.3 http://openjms.sourceforge.net

13 | using JDBM for persistency
¥ If using JDBC for persistency

jndi_1.2.1.jar

openjms-client-0.7.5.jar
openjms-rmi-0.7.5.jar™

121
0.7.5
0.7.5

http://java.sun.com/products/jndi

http://openjms.sourceforge.net

http://openjms.sourceforge.net

The following libraries are required to build OpenJMS. Note that all of these libraries are
provided in the source distribution, and are also available from CVS.

Library Version Library

jdbm.jar 0.7 http://sourceforge.net/projects/jdbm
log4J 1.1.3.jar 1.1.3 http://jakarta.apache.org/log4j/docs/index.html
xerces-2.3.0.jar 2.3.0 http://xml.apache.org/xerces-j/index.html
xml-apis-1.0.b2.jar 1.0.b2 http://xml.apache.org/commons
xalan-2.4.1.jar 2.4.1 http://xml.apache.org/xalan
antlr_2.7.2a2.jar 2.7.2a2 http://www.antlr.org

jdbc2_0-stdext.jar 2.0 http://java.sun.com/products/jdbc
jndi_1.2.1.jar 1.2.1 http://java.sun.com/products/jndi
jms_1.0.2a.jar 1.0.2a http://java.sun.com/products/jms/
jta_1.0.1jar 1.0.1 http://java.sun.com/products/jta
oro-2.0.4.jar 2.04 http://jakarta.apache.org/oro/index.html
tyrex-0.9.8.7.jar 0.9.8.7 http://www.tyrex.org

castor-0.9.3.jar 0.9.3 http://www.castor.org
exolabcore-0.3.5.jar 0.35 http://openjms.sourceforge.net
junit_3.7.jar 3.7 http://www.junit.org

ant_1.5.1.jar 15.1 http://ant.apache.org/
ant_optional_1.5.1.jar 15.1 http://ant.apache.org/

1> Only require this library if you are connecting to an RMI server

	Introduction
	What is OpenJMS?
	Features!
	About This Guide
	Support Services
	System Requirements
	Getting OpenJMS
	Binary Distribution
	Source Distribution
	CVS
	CVS Snapshot

	Environment Variables

	Upgrading
	From Binary Distribution
	From CVS Repository
	Released Version
	CVS Snapshot

	Building
	Building the Source
	Directory Structure
	Preparatory work for the UNIX Environment
	Building

	Building the Examples
	Directory Structure
	Preparatory work for the UNIX Environment
	Building

	Server Scripts
	Overview
	Environment Scripts
	Note

	Configuration
	Configuration File Format
	Overview
	Examples

	Administration Configuration
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples

	Other Configuration Files
	Log4j Configuration File

	Configuration of an RMI OpenJMS Server
	Configuration of a TCP OpenJMS Server
	Support for External JNDI Provider
	Sample Database Configurations
	Oracle
	Sybase
	MySQL
	HSQL
	Interbase
	JDBM

	Configuring a JDBC Database
	Adding JDBC Driver to the classpath
	Edit the OpenJMS configuration file
	Execute the dbtool application
	What If dbtool doesn’t work?

	Starting the Server
	RMI Server
	TCP Server
	RMI Server with External JNDI Provider
	Database Lock Not Released
	Address in Use

	Running Your First Programs
	Overview
	Client Interaction Diagram
	Single Publisher, Single Transient Subscriber
	Single Publisher, Single Durable Subscriber
	Multiple Publishers, Multiple Subscribers
	Single Sender, Single Receiver
	Single Senders, Multiple Receivers
	Multiple Senders, Multiple Receivers

	Using the Administration Tool
	Introduction
	Running the Administration Tool
	Menu Options
	Modes of Operation
	Online Mode
	Offline Mode
	Understanding the Display
	Context Sensitive Commands
	OpenJMS Server Node
	Add Queue
	Add Topic
	Purge Messages

	Topic Node
	Add Consumer
	Delete Topic

	Queue Node
	Delete Queue

	Consumer Node
	Deactivate Consumer
	Delete Consumer

	Using the OpenJMS Admin API
	Features
	Using the API
	Accessing the OpenJMS Admin API
	Using the OpenJMS Admin API

	The exolabcore library
	OpenJMS over SSL
	Typical Configurations
	RMI, Oracle, Embedded JNDI Server
	TCP, MySQL, External JNDI Server
	RMI, JDBM, External JNDI Server

	OpenJMS Performance
	Appendix A: OpenJMS with Jakarta Tomcat
	Introduction
	Dependencies
	Context Diagram
	Writing an OpenJMS Web Application
	SimplePublisher.html
	SimplePublisher.java
	Compiling and Packaging

	Deploying the OpenJMS Web Application
	Unpack the Web Application
	Modify the server.xml configuration file
	Restarting Tomcat
	Starting the OpenJMS Server

	Using the OpenJMS Web Application
	Resources
	OpenJMS
	Jakarta Tomcat

	Appendix B: OpenJMS Library Dependencies
	Runtime Library Dependencies
	OpenJMS Client

